tt CROSS-SECTION WITH JET PROBABILITY Blessing

Gervasio Gómez, Enrique Palencia, Teresa Rodrigo, Luca Scodellaro, Rocío Vilar

Instituto de Física de Cantabria IFCA

Top Meeting August 19, 2004

Outline

- Motivations and Analysis Overview
- Questions and Answers

www-cdf.fnal.gov/internal/physics/top/RunIIWjets/webpages/jetprob/cdfonly.html

Results for Blessing

Motivations and Analysis Overview

- Motivation
- ♦ Cross check tt x-section measurement with a algorithm different tagging
- composition of the tagged sample by tunning the JP cut the
- $\diamondsuit \,$ JP can be tuned/optimized differently for other kind of analysis
- Main goal: Optimize and publish this analysis with gen5 and \sim 400 pb $^{-1}$ of data

Motivations and Analysis Overview

- Overview of the analysis
- \diamond We use v.4.11 offline (Data sample \sim 162 pb $^{-1}$).
- * Jet Probability parametrization (provided by the Florida group) available in this release only (CDF Note 6315)
- Jet Probability efficiency and Tag Rate Matrix described in CDF Note 6931 and 6913 respectively
- We have remade the official Top ntuples in order to include the JP W+jets backgrounds, diboson, $Z
 ightarrow au^+ au^-$ and single top information for the samples of lepton+jets data, tt MC W+HF and
- \diamondsuit Event selection based on the standard Lepton+jets selection (CDF Note 6844)
- At least a jet with JP<0.01 required (no attempt has been done so far</p> to make an optimization cut)

Motivations and Analysis Overview

- \sim 685000 $tar{t}$ events from TTOPEI dataset used to reproduce acceptance and compute tagging efficiencies
- Background Estimate:
- Mistagged events predicted by means of the negative tag rate matrix
- \star Non-W contribution derived with the E_T vs lepton isolation method
- W+Heavy Method 2 flavor background estimated by using the standard
- \star Diboson, $Z \to \tau \tau$ and single top events derived from Monte Carlo
- www-cdf.fnal.gov/internal/physics/top/RunIIWjets/webpages/jetprob/cdfonly.html All the results are in CDF Note 7150

- Do you know the qualitative reason why JP needs Z_{vtx} for the tag rate matrix, while SecVtx does not?
- A Track selection for SecVtx and JP taggers is different:
- * The SecVtx algorithm requires at least three good hits on three different layers
- $\star~Z_{vtx}$ dependence is taken into account by the N_{trk} and η variables
- JP tagger requires three hits, no matter if good or not
- JP is less sensitive to the three-barrel geometry of the silicon detector

- Q Why do you have non overlapping events in the JP and SecVtx selected samples?
- A The SecVtx and the JP taggers use a different track selection:
- ⋆ SecVtx applies tighter requirements on the silicon hits
- * JP makes a tighter upper cut on the track impact parameter:
- JP: $|d_0^{max}| < 0.1 cm$
- SecVtx: $|d_0^{max}| < 0.3 \ cm$

- Q What signal simulation are you using?
- A As quoted in the note, we are using the TTOPEI dataset
- In the preblessing talk we said TTOPLI because of a typo
- There is some disagreement between the pretag samples in the acceptance note 6844 (Table 5) and this analysis (Table 2). Why?
- A Table 5 in CDF Note 6844 refers to 193.5 pb-1 of data before silicon good run requirement
- Table 2 in our note refers to 161.6 pb-1 of good silicon run data

Q Why is the statistical error on $\epsilon_{tar{t}}\int$ Ldt much greater than in the SecVtx Analysis?

A Error: we put the error on the luminosity both in the systematic and statistical uncertainties (new Table 5 in the note)!

$\epsilon_{tar{t}}\intLdt$ 3.	Average Tag Eff	Tag Eff 52	S	$\epsilon_{tar{t}}\intLdt$ 3.	Lum (pb^{-1})	Acc. with Tag 2.	Average Tag Eff	Tag Eff 56	Acc. No Tag 4.		Quantity
$3.65 \pm 0.04 \pm 0.47$		$52.2 \pm 0.386 \pm 3.68$	SecVtx (QCD cut not applied, SF = 0	$3.77 \pm 0.05 \pm 0.58$	161.6 ± 9.5	$2.33 \pm 0.03 \pm 0.33$		$56.99 \pm 0.28 \pm 6.66$	$4.09 \pm 0.04 \pm 0.33$	JP (QCD cut applied, SF = 0.787	CEM
$1.90 \pm 0.02 \pm 0.24$	$52.3 \pm 0.284 \pm 3.69$	$51.9 \pm 0.492 \pm 3.66$	applied, SF = 0.81 \pm 0.07)	$1.95 \pm 0.02 \pm 0.32$	161.6 ± 9.5	$1.21 \pm 0.01 \pm 0.19$	$57.24 \pm 0.21 \pm 3.85$	$56.88 \pm 0.36 \pm 6.67$	$2.12 \pm 0.02 \pm 0.21$	ed, SF = 0.787 ± 0.105)	CMUP
$0.80 \pm 0.01 \pm 0.10$		$53.6 \pm 0.804 \pm 3.78$	07)	$0.82 \pm 0.01 \pm 0.15$	149.8 ± 8.8	$0.55 \pm 0.01 \pm 0.09$		$57.84 \pm 0.60 \pm 6.67$	$0.95 \pm 0.01 \pm 0.12$		CMX

- Q Could you provide the tagging efficiency for b-jets and c-jets derived from MC separately?
- A Efficiencies for b(c)-jets computed by matching b(c) partons to the jets
- The denominator is the number of events passing kinematic selection

$57.84 \pm 0.60 \pm 6.67$	$56.88 \pm 0.30 \pm 6.67$	$56.99 \pm 0.28 \pm 6.66$	total eff. (%)
$3.70 \pm 0.28 \pm 0.74$	$3.51 \pm 0.36 \pm 0.70$	$3.43 \pm 0.10 \pm 0.69$	c's efficiency (%)
$55.23 \pm 0.60 \pm 7.05$	$54.25 \pm 0.36 \pm 7.05$	$54.93 \pm 0.28 \pm 7.14$	b's efficiency (%)
CMX	CMUP	CEM	

To estimate mistag background you used the negative tag rate matrix studies? and attached +20% error. Why do not you use the 1.2 factor from SecVtx

A We plan to do a sample composition study for JP with gen5

- \star We do not know the effect of the material on the positive tag rate and it is not easy to say how much the effect can be different from Sec∀tx
- $\star~$ We would expect our scale factor due to material interactions and longed SecVtx upper cut on the track d_0 $(|d_0^{max}| < 0.1 \ cm$ for JP, $|d_0^{max}| < 0.3 \ cm$ for lived Ks or Lambdas to be smaller, because JetProbability uses a tighter
- Using the 1.2 factor is not going to reduce our uncertainty
- \star If we apply the scale factor we obtain a shift on the cross section from 5.8to 5.7 pb, that is very well covered by our systematic uncertainty

- Could you show how you calculate the uncertainty on mistag into account errors on F_{Non-W} ? background? Why is it symmetric if you have a +20%. Do you take
- A Before corrections: errors due to statistics from the mistag matrix
- * Correlation between mistag probabilities from the same bin of the matrix included

Jet Multiplicity	1 jet	2 jets	3 jets	\geq 4 jets
	Mista	Mistag matrix prediction	on	
Mistag electrons	24.1 ± 1.8	9.08 ± 0.95	2.87 ± 0.03	1.42 ± 0.03
Mistag muons	17.0 ± 1.6	5.76 ± 1.05	$\textbf{1.57} \pm \textbf{0.08}$	0.83 ± 0.01
Total	41.1 ± 2.5	41.1 \pm 2.5 14.84 \pm 1.66	4.44 ± 0.09	2.26 ± 0.03
Pre	Prediction \times (1-F _{QCD})		& $+20\%$ sys. error	
Mistag electrons	$22.6^{+5.2}_{-1.8}$	$8.19^{+2.06}_{-0.97}$	$2.51^{+0.60}_{-0.19}$	$1.21^{+0.31}_{-0.12}$
Mistag muons	$16.6^{+3.7}_{-1.6}$	$5.60^{+1.54}_{-1.02}$	$1.49^{+0.33}_{-0.09}$	$0.78^{+0.17}_{-0.04}$
Total	$39.2^{+8.6}_{-2.6}$	$13.78^{+3.38}_{-1.65}$	$4.00^{+0.91}_{-0.24}$	$1.99^{+0.47}_{-0.15}$

- We add +20% systematic uncertainty due to the effect of the material on the positive tag rate (Error: this was reported as a symmetric uncertainty on the previous talk)
- We add statistic and systematic errors on the fractions of Non-W events
- Systematic errors are treated as fully correlated
- $\star~9.6$ statistical error on mistag prediction quoted in Table 24 changed to 2(matrix uncertainty only)

Q Is there any sensitivity study for applying the QCD veto?

A So far, we are using the standard selection described in CDF Note 6844

 \star No attempt to optimize kinematic requirements like H_T cut or QCD veto

≤	We found this cut reduces the fraction of Non-W	educes the f	raction of No	า-W events b	events by a factor of 2
	Jet Multiplicity	1 jet	2 jets	3 jets	\geq 4 jets
			Electrons		
	$F_{non} - W$	0.062 ± 0.003	0.099 ± 0.007	0.124 ± 0.021	0.144 ± 0.049
	F_{non-W} (no veto)	0.147 ± 0.004	0.181 ± 0.010	0.201 ± 0.025	0.299 ± 0.076
	N_{tab}^{nou-M}	9.85 ± 2.26	4.00 ± 1.24	3.08 ± 1.06	1.54 ± 0.72
	N^{tag}_{non-W} (no veto)	29.49 ± 3.97	14.04 ± 2.37	6.20 ± 1.49	2.28 ± 0.88
			Muons		
	F_{non-W}	0.022 ± 0.001	0.028 ± 0.003	0.050 ± 0.014	0.059 ± 0.034
	F_{non-W} (no veto)	0.040 ± 0.002	0.051 ± 0.004	0.099 ± 0.018	0.114 ± 0.052
	N_{bap}^{-uou}	1.56 ± 0.56	1.95 ± 0.68	0.78 ± 0.37	0.26 ± 0.19
	N^{tag}_{non-W} (no veto)	4.75 ± 0.93	3.71 ± 0.72	1.68 ± 0.46	0.48 ± 0.24

* Efficiency on signal events is about 94%

* Systemtic uncertainty for this method are big (50%)

Top Meeting, August 19, 2004

Q Could you show how you compute the numbers of Non-W events in the pretagged sample you quote in Table 12?

A
$$Pretag = N^{D}_{events} \times F_{non-W}$$

 $\star~N_{events}^{D}$ and F_{non-W} from Table 8 in the CDF Note 7150

- Can you explain the source of the statistical uncertainties (14% from MC and 0.8% from data) on W+Heavy flavor fraction/tags you quote in Table 23?
- A 14% from statistical uncertainty on HF fractions and tagging efficiencies
- \star Error on Wcc uncertainty. This contribution changes to 4%
- \star 0.8% from tag rate matrix statistic (through the F_{non-W} applied to the pretag sample)

	2.7	<u>_</u>	MC derived (σ 's)
2	ı	+20.0	Mistag
0.8	4	30	W+HF fraction/tags
34	ı	50	QCD prediction
17	ı	50	QCD fraction
•	ı	5.9	Luminosity
ı	ı	13/20	Scale Factor (b's/c's)
-	1	8.7	Kinematic efficiency
Stat from data (%)	MC stat (%)	Sys (%)	Error

- Q Uncertainties on the cross sections for diboson and single top production look small. Do they include PDF uncertainty?
- A Diboson cross sections computed with MRS98 and CTEQ5 PDF's
- Uncertainty is half difference of the results
- Single top cross sections computed with CTEQ PDF
- Uncertainty estimated by varying choice of scale

262084	atop1s	1.98 ± 0.08	Single top W-g
239083	ato0sp	0.88 ± 0.05	Single top W^{\star}
242500	atop0z	1.58 ± 0.02	ZZ
191011	atop0y	3.96 ± 0.06	WΖ
597399	atop4x	13.25 ± 0.25	WW
Events	MC Sample	Cross Section	Process

scaled up by a factor of 20 * The effect of these errors on the total uncertainty is negligible even if

- The pretagged sample is corrected for the contribution of non-W, and then later for tt, but is it corrected for MC derived backgrounds?
- A Correction for the contribution of MC derived to the pretagged sample is applied in the final iterative procedure to estimate the cross section
- \star The effect of this correction on the pretagged sample is about 4%
- For comparison, the sample is about 16% effect of the signal correction to the pretagged
- Q Can you show the size of the iterative correction?

DATA	Uncorrected Total Background	Total Background	Non W	Mistag	W+HF	MC Derived Backgrounds	Jet Multiplicity
131	$155.8^{+31.7}_{-30.6}$	$154.8^{+31.7}_{-30.6}$	11.4 ± 6.2	$38.9^{+8.5}_{-2.6}$	100.3 ± 29.3	4.2 ± 0.8	1 jet
81	$65.5^{+11.8}_{-11.5}$ 1	$62.7^{+11.8}_{-11.5}$	6.0 ± 3.3	$13.2^{+3.2}_{-1.6}$	36.5 ± 9.6	7.7 ± 1.4	2 jets
31	$17.8^{+3.3}_{-3.2}$	$15.9^{+3.3}_{-3.1}$	3.9 ± 2.2	$3.4^{+0.8}_{-0.2}$	6.6 ± 1.7	2.0 ± 0.4	3 jets
28	$6.9_{-1.4}^{+1.5}$		1.8 ± 1.2	$1.1^{+0.25}_{-0.08}$	1.4 ± 0.4	0.41 ± 0.09	≥ 4 jets

Q Can you quote asymmetric statistical uncertainty?

A Statistical uncertainty derived with several coverage schemes

-1.11708	-1.11524	
+1.36479	+1.36329	Probability Ordering
-1.16517	-1.16341	
+1.31599	+1.31443	Pearson's chi2 Ordering
-1.19271	-1.191	
+1.28895	+1.28736	Unified
-1.18919	-1.18746	
+1.34995	+1.34843	Classical
-1.14453	-1.14274	
+1.2448	+1.24315	Improved L
-1.14282	-1.14103	
+1.24323	+1.24159	Likelihood
-1.21242	-1.21073	
+1.21242	+1.21073	Neyman
-1.11965	-1.11782	
+1.2703	+1.26868	Pearson
Total Statistical Error	Statistical Error Data	Intarval

- \star For N=59 the coverage converges to 68.2% for all the schemes
- We take an average of the different results
- * We get
- Upper error = +1.3
- Lower error = -1.2
- Data and MC statistical uncertainties quoted together!

Yield of the events

7		TI.			,
	Jet Multiplicity	1 jet	2 jets	3 jets	≥ 4 jets
		Preta	Pretag events		
	CEM	7819	1202	201	61
	CMUP	3758	587	81	27
	CMX	1971	293	36	<u></u>
	Total	13548	2082	318	94
		Tagge	Tagged events		
	CEM	78	40	21	17
	CMUP	40	30	∞	10
	CMX	13	11	2	1
	Total	131	81	31	28

Summary of acceptances

Quantity	CEM	CMUP	CMX
	JP (QCD cut applied, SF = 0.787	ed, SF = 0.787 ± 0.105)	
Acc. No Tag	$4.09 \pm 0.04 \pm 0.33$	$2.12 \pm 0.02 \pm 0.21$	$0.95 \pm 0.01 \pm 0.12$
Tag Eff	$56.99 \pm 0.28 \pm 6.66$	$56.88 \pm 0.36 \pm 6.67$	$57.84 \pm 0.60 \pm 6.67$
Average Tag Eff		$57.24 \pm 0.21 \pm 3.85$	
Acc. with Tag	$2.33 \pm 0.03 \pm 0.33$	$1.21 \pm 0.01 \pm 0.19$	$0.55 \pm 0.01 \pm 0.09$
$Lum\ (pb^{-1})$	161.6 ± 9.5	161.6 ± 9.5	149.8 ± 8.8
$\epsilon_{tar{t}}\intLdt$	$3.77 \pm 0.05 \pm 0.58$	$1.95 \pm 0.02 \pm 0.32$	$0.82 \pm 0.01 \pm 0.15$

Mistag background estimate

$1.99^{+0.47}_{-0.15}$	$4.00^{+0.91}_{-0.24}$	$13.78^{+3.38}_{-1.65}$	$39.2^{+8.6}_{-2.6}$	Total
$0.78^{+0.17}_{-0.04}$	$1.49^{+0.33}_{-0.09}$	$5.60^{+1.54}_{-1.02}$	$16.6^{+3.7}_{-1.6}$	Mistag muons
$1.21^{+0.31}_{-0.12}$	$2.51^{+0.60}_{-0.19}$	$8.19^{+2.06}_{-0.97}$	$22.6^{+5.2}_{-1.8}$	Mistag electrons
	0% sys. error	Prediction \times (1-F _{QCD}) & $+20\%$ sys.	ediction \times (1-	P
2.26 ± 0.03	4.44 ± 0.09	41.1 ± 2.5 14.84 ± 1.66 4.44 ± 0.09	41.1 ± 2.5	Total
0.83 ± 0.01	1.57 ± 0.08	5.76 ± 1.05	17.0 ± 1.6	Mistag muons
1.42 ± 0.03	2.87 ± 0.03	9.08 ± 0.95	24.1 ± 1.8	Mistag electrons
	on	Mistag matrix prediction	Mista	
\geq 4 jets	3 jets	2 jets	1 jet	Jet Multiplicity

Pretag events count

F_{non-W}	Region D	Region C	Region B	Region A		F_{non-W}	Region D	Region C	Region B	Region A		Jet Multiplicity
0.022 ± 0.001	5729	304	3247	7982		0.062 ± 0.003	7819	615	18584	23522		1 jet
0.028 ± 0.003	880	115	304	1404	Pretag Muons	0.099 ± 0.007	1202	243	1800	3692	Pretag Electrons	2 jets
0.050 ± 0.014	117	25	42	180		0.124 ± 0.021	201	61	222	541		3 jets
0.059 ± 0.034	33	10	တ	31		0.144 ± 0.049	61	19	32	69		\geq 4 jets

Non-W background estimate

1.13 1.80 ± 0.75		$ 5.95 \pm 1.41 3.86 \pm$	11.41 ± 2.34	Final result
0.26 ± 0.19	0.78 ± 0.37	1.95 ± 0.68	1.56 ± 0.56	N_{non-W}^{tag}
2	တ	15	9	c_{tagged}
	0.13 ± 0.03		0.17 ± 0.02	$(B/A)_{tagged}$
		Muons		
1.54 ± 0.72	3.08 ± 1.06	4.00 ± 1.24	9.85 ± 2.26	N_{non-W}^{tag}
٥.	10	13	21	c_{tagged}
	0.31 ± 0.04		0.47 ± 0.03	$(B/A)_{tagged}$
		Electrons		
\geq 4 jets	3 jets	2 jets	1 jet	Jet Multiplicity

Tagging efficiency for W+HF events

8.2 ± 1.7	8.2 ± 1.6	8.4 ± 1.7	8.4 ± 1.7	$Wc(\geq 1tag)$
15.7 ± 3.2	15.5 ± 3.1	16.9 ± 3.4	0 ± 0	2C(≥ 1tag)
7.7 ± 1.6	7.8 ± 1.6	7.9 ± 1.6	8.1 ± 1.6	1C(≥ 1tag)
48.1 ± 6.3	48.5 ± 6.4	51.8 ± 6.8	0 ± 0	IV
28.4 ± 3.8	28.6 ± 3.7	27.5 ± 3.6	29.0 ± 3.8	$1B(\geq 1tag)$
\geq 4 jets	3 jets	2 jets	1 jet	Jet Multiplicity

DATA	$tar{t}$ (6.7 pb)	Total Dankarana	Non W	Mistag		Total	Wc	Wcc	ddW		Total	Single Top (W-g)	Single Top (W^st)	$Z au^+ au^-$	ZZ	WZ	MM		Jet Multiplicity
131	$155.85_{-30.62}^{+30.62}$ 1.18 ± 0.20	1 r r or +31.70	11.41 ± 6.17	$39.2^{+8.6}_{-2.6}$		101.0 ± 29.5	46.74 ± 13.50	16.77 ± 5.91	37.52 ± 12.32		4.245 ± 0.774	1.907 ± 0.326	0.538 ± 0.094	0.473 ± 0.185	0.036 ± 0.008	0.539 ± 0.095	0.753 ± 0.127	MC D	1 jet
81	$65.53_{-11.46}^{+11.46}$ 8.99 ± 1.53	クマ マコ +11.83	5.95 ± 3.29	$13.78^{+3.38}_{-1.65}$	Others	38.10 ± 10.03	7.00 ± 2.06	9.57 ± 1.96	21.53 ± 6.80	W + HF	7.708 ± 1.388	2.429 ± 0.414	1.783 ± 0.312	0.814 ± 0.256	0.078 ± 0.015	1.051 ± 0.180	1.553 ± 0.259	MC Derived Backgrounds	2 jets
31	$17.76_{-3.16}^{1}$ 19.10 ± 3.25	1110+3.28	3.86 ± 2.24	$4.00^{+0.91}_{-0.24}$		7.87 ± 1.99	1.48 ± 0.43	1.96 ± 0.64	4.43 ± 1.27		2.027 ± 0.382	0.498 ± 0.087	0.558 ± 0.098	0.172 ± 0.104	0.043 ± 0.009	0.319 ± 0.059	0.437 ± 0.075	ıds	3 jets
28	$\begin{array}{c} 6.89_{-1.43}^{+2.13} \\ 24.51 \pm 4.17 \end{array}$	$\sim 0.0+1.50$	1.80 ± 1.17	$1.99^{+0.47}_{-0.15}$		2.69 ± 0.76	0.42 ± 0.13	0.71 ± 0.25	1.56 ± 0.50		0.412 ± 0.090	0.075 ± 0.015	0.131 ± 0.024	0.052 ± 0.053	0.009 ± 0.003	0.057 ± 0.015	0.088 ± 0.017		\geq 4 jets

We calculate the tt cross section as

$$\sigma_{t\bar{t}} = \frac{N_{obs} - B_{bkg}}{\epsilon_{t\bar{t}} \times \int L dt}$$

- Iterative procedure to correct mistag and W+ Heavy flavor background predictions for $t\bar{t}$ contribution to pretagged sample applied
- Diboson, $Z \to \tau \tau$ and single top expectations are also subtracted
- Finally we get

$$\sigma = 5.8^{+1.3}_{-1.2}(stat)^{+1.3}_{-1.3}(syst) \ pb$$

Effect of the iterative correction

Total Background Uncorrected Total Background DATA	Non W	W+HF	MC Derived Backgrounds	Jet Multiplicity
$154.8_{-30.6}^{+31.7} \\ 155.8_{-30.6}^{+31.7} \\ 131$	11.4 ± 6.2	100.3 ± 29.3	4.2 ± 0.8	1 jet
62.7 ^{+11.8} 65.5 ^{+11.8} 81	6.0 ± 3.3	36.5 ± 9.6	7.7 ± 1.4	2 jets
15.9 ^{+3.3} 17.8 ^{+3.3} 17.8 ^{-3.2} 31	3.9 ± 2.2	6.6 ± 1.7	2.0 ± 0.4	3 jets
$\begin{array}{c} 4.8^{+1.4}_{-1.4} \\ 6.9^{+1.5}_{-1.4} \\ 28 \end{array}$	1.8 ± 1.2	1.4 ± 0.4 $_{1}$ $_{1}^{+0.25}$	0.41 ± 0.09	\geq 4 jets

Summary of the statistical and systematic uncertanties

ı	2.7	1.8	MC derived $(\sigma's)$
2	ı	+20.0	Mistag
0.8	4	30	W+HF fraction/tags
34	ı	50	QCD prediction
17	ı	50	QCD fraction
ı	ı	5.9	Luminosity
ı	ı	13/20	Scale Factor (b's/c's)
-	1	8.7	Kinematic efficiency
Stat from data (%)	MC stat (%)	Sys (%)	Error